On a Property of Groups with Coverings

نویسندگان

  • Ahmad Erfanian
  • Francesco G. Russo
  • A. Erfanian
چکیده

A subgroup H of a group G is conjugately dense in G if for each element g in G the intersection of H with the conjugates of g in G is nonempty. Conjugately dense subgroups deal with interesting open problems, related to parabolic groups. In the present paper we study them with respect to suitable coverings. 2000 Mathematics Subject Classification: 20E45, 20B35, 20F99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On subgroups of topologized fundamental groups and generalized coverings

‎In this paper‎, ‎we are interested in studying subgroups of topologized fundamental groups and their influences on generalized covering maps‎. ‎More precisely‎, ‎we find some relationships between generalized covering subgroups and the other famous subgroups of the fundamental group equipped with the compact-open topology and the whisker topology‎. ‎Moreover‎, ‎we present some conditions unde...

متن کامل

ALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS

Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

Covering Invariants and Cohopficity of 3-manifold Groups

A 3-manifold M is called to have property C if the degrees of finite coverings over M are determined by the manifolds. Thurston asked the problems of whether there is a real valued invariant of 3-manifolds with a certain covering property, and what 3-manifolds have property C. For geometric manifolds the conjecture is that M has property C if and only if it is not covered by surface×S or torus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010